Les liquides ioniques sont des électrolytes composés exclusivement de cations et d’anions organiques en interaction. Leurs remarquables stabilités chimique et électrochimique en font d’excellents candidats pour le développement de systèmes de stockage d’énergie, devant répondre à des critères stricts quant au risque de combustion.

En tant que liquides purs, ils présentent des propriétés physico-chimiques originales, liées à leur structure locale sous la forme d’agrégats transitoires de taille nanométrique, qui résulte de la compétition entre interactions électrostatiques et forces de van der Walls. Une analyse fine de l’auto-diffusion des cations , mesurée aux différentes échelles, entre le niveau moléculaire jusqu’à l’échelle mésoscopique, par diffusion de neutrons ou de lumière et RMN, montre que ce phénomène d’auto-association des espèces ioniques de charge opposées est un facteur limitant de la conductivité électrochimique.

Il est ensuite montré que la frustration de la formation des agrégats par confinement nanométrique unidimensionnel est alors une voie prometteuse pour apporter aux liquides ioniques des propriétés de conductions, qui se révèlent compétitives en comparaison avec des électrolytes moins stables.

Propriétés de transport multi-échelles des liquides ioniques. Nanostructuration et conséquences technologiques pour les batteries